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A simple theory is presented to explain the strong influence of molecular weight (M) on rates of fatigue 
crack propagation (FCP) in amorphous polymers. It is proposed that the equation describing FCP rates 
may be expressed as the product of two functions, one involving the stress intensity factor (A/Q, and the 
other characterizing the relaxation process occurring in the plastic zone. To provide a physical network in 
the plastic zone that can sustain fatigue loading, it is proposed that one needs a sufficient fraction of 
molecular fibrils per unit area (W*) whose lengths are greater than Me, the critical value of M required for 
entanglement. This effect can be summarized as a generalized rate process (confined at the plastic zone) 
expressed by A exp (BtQ where t~ is a stress and A and B are constants (B including the volume of 
activation). It is deduced that M influences the activation volume through the values of W* and W, the 
weight fraction of molecules whose M>  M~. Using the equation developed it was possible to correlate 
FCP data of PVC and PMMA as a function of/V/with a high degree of confidence. Also, the value of 
activation volumes obtained compared favourably with those in the literature for static tests. The 
complementary value of IN* for these polymers was also seen to approximate closely to the void fraction 
in a craze. Extension to other cases such as semi-crystalline materials also seems possible. 

(Keywords: fatigue crack propagation; molecu lar weight; molecular weight distribution; plastic zone; 
entanglement; rate process; volume of activation) 

INTRODUCTION 

Molecular weight (M) and its distribution have long been 
known to be important in determining the flow behaviour 
and mechanical response of polymers 1-4. For example, as 
molecular weight is increased from a low value, a critical 
value is found beyond which the dependence on M of melt 
viscosity (ref. 3, ch. 3), strength 4-6, and fracture energy v'8 
increases markedly; eventually the strength and fracture 
energy begin to level off. Also, a pronounced plateau in 
compliance begins to appear at long relaxation times (ref. 
3, ch. 9). The enhanced resistance to deformation and flow 
above some such critical value, Me, has generally been 
attributed to the ability to form an effective entanglement 
network; M¢ is usually taken to approximately equal 2Me, 
where Me is conventionally defined as the average mole- 
cular weight spacing between entanglements (ref. 1, ch. 
10). While the term 'entanglement' is sometimes taken to 
imply the existence of discrete loci of coupling, no 
particular topology of coupling is assumed in this paper; 
Me and Me are still useful measures of the extent of 
coupling between molecules, whatever the precise nature 
of the interaction. 

Examination of the intensity of M dependences reveals 
a wide variation from property to property. Whereas melt 
viscosity depends on approximately the 3.4th power of M 
(for M > M~) (ref. 1, ch. 10), viscoelastic processes, and also 
the first and second normal stress differences in the melt 9, 
show dependences to higher powers, even to the 12th 
power. Strong effects of M have also been noted on the 
times to failure by stress-cracking 1°-12, and on the 
stability of crazes 4-6. Thus, the strong increase in fracture 

energy and tensile strength with increasing M in polys- 
tyrene and poly(methyl methacrylate) has been related to 
the increased stability and strength of crazes as M 
increases Me 4-6' 8,14 (see also ref. 13, ch. 9); in contrast, the 
initiation of crazing is much less dependent on M 6'16. 
Interestingly, the introduction of even a small con- 
centration of high-M polystyrene in a matrix containing 
molecules whose M (< Me) is too low to give stable crazes, 
can result in the formation of fibrils effective in spanning 
the craze faces ~ 5. 

Molecular weight and fatigue behaviour 
Striking effects of M on fatigue life in unnotched 

specimens have also been noted for several polymers 16,17. 
(for reviews, see refs. 18 and 19). Even though values of M 
were high enough that static properties had reached 
nearly asymptotic values, an order of magnitude differ- 
ence in M resulted in up to a 3-orders-of-magnitude 
difference in the number of cycles to failure over a wide 
range of cyclic stress; the higher M, the greater the 
lifetime. At about the same time, we reported similar 
strong dependences of fatigue crack propagation (FCP) 
rates in poly(methyl methacrylate) (PMMA) 2° and 
poly(vinyl chloride) (PVC)2 L Consistent with the study of 
unnotched specimens, large decreases in FCP rates were 
observed with increasing M, even though values of static 
fracture toughness varied little over the same range of M. 
Also, small concentrations of high-M PMMA were 
found 22 to stabilize crack growth in very brittle, low-M 
PMMA, s 15. In any case, it was proposed that at least up 
to a point, the higher the M, the greater the resistance to 
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disentanglement under long-term cyclic loading and 
unloading 19-22. In this respect, the effect of fatigue is 
analogous to that of slow creep or stress relaxation in 
which high values of M are reflected in a very much 
delayed response, even above Tg (ref. 3, ch. 9). 

In our studies (just cited), it was found that the curves of 
da/dN, (the crack growth rate per cycle), could be related 
to the range in the stress intensity factor, AK, reasonably 
well by the Paris equation2a: 

do 
--=AAK" (1) 
dN 

In equation (1), AK = YAax//-a, where Y is a geometrical 
factor depending on the specimen design, Aa is the range 
in applied stress, and a the crack length. By comparing 
values of dd/dN at constant AK, the following empirical 
expression was found to relate da/dN at constant AK to 
M 2°-24 (see Figure 1): 

Ida ]A = A:eB:m" (2) 

where M~ is an average M (typically the weight-average 
M) and A/and B: are constants (the subscriptfreferring 
to fatigue). Since then, these findings of exceptional 
enhancement of FCP resistance in high-M polymers have 
been confirmed here and elsewhere in PVC 24 and in 
many other polymers: high-density polyethylene 2s, 
polyaceta126, polyamides26, polycarbonate 27 and 
poly(ethylene terephthalate) 2 s. Indeed, equation (2) holds 
well in general as long as values of the exponent n in 
equation (1) are reasonably close to each other. Alter- 
nately, one may compare AK at a given da/dN. Com- 
bination of equations (1) and (2) yields an equation similar 
to (2): 

(AK)d=/dN = C/e (- ore,) (2a) 

Of course, when n is constant A: is proportional to AK". 
In ref. 22 it was shown that FCP rates in PMMA were 

very much dependent on W, the weight fraction of species 
having M > Me, where Me is the critical value of M for 
entanglement. [It may be noted that Platonov et al. 29 also 
recommend the use of W rather than M~ when correlating 
mechanical response with M.] Based in part on this 
observation, a simple viscoelastic model is proposed to 
account for the dependence of FCP rates on M in glassy 
polymers having unimodal distributions of M, and po- 
ssible extensions to other systems are suggested. The 
model leads to good predictions of FCP behaviour in 
PMMA and PVC, justifying equation (2), (at least within 
the range of M considered here) and, by analogy, the 
model fits some other viscoelastic responses as well. This 
paper revises preliminary results presented earlier 3°, and 
presents a more complete analysis. (For discussion of an 
alternate approach, see Appendix 1.) 

EXPERIMENTAL 

For this study, PVC and PMMA were selected, FCP data 
were taken from refs. 20 and 24, and distributions of M 
(MD) were re-examined using a Waters gel permeation 
chromatograph (g.p.c.), model 200A. The data were 
analysed to obtain several molecular weight averages (Mo, 
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Figure 1 Log FCP rate vs. 105/Mw (&) PVC and (V) PMMA 
FCP data from refs. 24 and 20 respectively 

M,, Mz), and integral distributions were obtained by a 
Simpson procedure. Values of the cumulative weight 
fraction Iw and I s fraction were also evaluated by 
interpolation (using Lagrange polynomials) at assumed 
values of Me. 

W, the weight fraction of molecules having M > Me, is 
equal to (1 - I,); the values of Wwere also estimated using 
equation (3a) for PVC: 

W = exp I -  [Mc \ i  .946] 
l'46LM-~) ~ (3a) 

With PVC, a correlation factor of 0.99 was found, 
assuming Mc=22000 (a value justified below). For 
PMMA a similar expression is valid for our low-to- 
medium-M specimens (M < 6 x 105), for an Mc of 30 000: 

W = exp[ - 0.038 exp( + 5"M--~--43M~)] (3b) 

A comparison of W values is given in Table I, along 
with values of M,,, which gave the best correlations with 
the various parameters discussed below. W*, the critical 
value of W required to sustain plastic deformation, was 
estimated by plotting the relative fracture surface energy, 
)'/7~o (where ~'oo is the value of 7 in the limit of very high M) 
vs. W, and locating the intercept on the x-axis (see below). 
The molecular weight corresponding to W*, M*, was then 
estimated using equations (3a) and (3b) for PVC and 
PMMA, respectively. 

It should be noted that a universal calibration me- 
thod 31 including the Ptitsyn correction for non-Gaussian 
swelling32 was used to take into account the fact that g.p.c. 
screens with respect to hydrodynamic volume, not M. The 
values for the Mark-Houwink constants (K and a) are 
reported in Table 1 together with molecular weight 
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Table 1 Characteristics of  polymers used 

PMMA(2o)  _ _  _ _  
M c = 30,000 M n x 10 - s  M w x 10 - s  W(g.p.c.) W(Eqn. 3b) 

q~ 0 2.96 17.7 0.991 - 
1 3.73 13.4 0.996 - 
2 5.37 12.4 1.00 - 
3 1.19 5.07 0.949 0.950 
4 0.74 1.92 0.919 0.919 
5 0.50 1.05 0.857 0.848 

6 0.34 0.75 0.734 0.744 

PVC( =* ) _ _  _ _  
M c = 22,000 M n x 10 - 4  M w x 10 - 4  W(g.p.c.) W(Eqn. 3a) 

131,1 1.87 4.79 0.704 0.724 
132,1 2.46 5.26 0.776 0.764 
133.1 2.88 5.93 0.816 0.808 
134,1 3.50 7.51 0.880 0.874 
135.1 4.14 9.2 0.909 0.910 

Mark -Houw ink  Constants Used (THF,  25°C, [rt] in dl/g) 

Polymer K x l 0 4  a Ref. 

PS M > 104 1.45 0.7 69 
M < 104 9.0 0.5 

P M M A  M > 31,000 1.04 0.697 70 
M < 31,000 21.1 0.406 

PVC - 1.63 0.766 70 

information. No corrections for broadening or skewing 
were applied. Although the lack of such calibration in 
earlier results 2°'22'2'~'67 does not affect the qualitative 
conclusions discussed above, such correction is obli- 
gatory for quantitative discussions. 

On the choice of M c. Operationally, Mc is usually taken 
to be the value of M at which the dependence of melt 
viscosity on M changes from the first to 3.4-th power. As 
noted in the introduction, Mc is often related to 2 Mr. 
However, there are major exceptions (for example, 
PMMA) in which the proportionality factor may be as 
high as 3. Also, in terms of a limiting molecular weight at 
which the entanglement network starts to manifest itself 
in mechanical properties, controversy also exists. For  
example, a 'zero' tensile strength (no plastic deformation) 
was observed by Gent and Thomas 5 to appear for 
M,~-2Mc (although the zero strength for PMMA is 
approached for a value of/~rn of about 25 000 in the range 
of Me). Kusy and Turner suggested s a critical M for 
PMMA of 105, past which plastic deformation would 
occur (~  3M~). Also the limit of tensile strength for small 
films 15 is invariably achieved at a lower M than with a 
thicker sample s'6. Therefore values of W and Z were 
evaluated at different values of M c; justification for the M¢ 
values preferred is given below (see Discussion: The role 
of molecular weight). 

RESULTS AND DISCUSSION 

First let us assume that the mechanism of failure is 
dominated by a viscoelastic relaxation process, e.g. creep 
or stress relaxation 1°. This assumption is surely reason- 
able for an amorphous polymer in which most of the 
specific fracture energy reflects plastic deformation rather 
than bond rupture. To wit, healing experiments con- 
ducted on broken specimens of PMMA and P M M A -  
SAN show that the original fracture toughness of the 

virgin specimen can be restored if sufficient time is allowed 
for healing of the crack past T~ 33. Since disentanglement is 
inherently reversible while primary bond rupture is 
essentially irreversible 34, a significant amount of mole- 
cular fracture would be reflected in a drop in the 
maximum recoverable fracture toughness. In any case, the 
formalism developed below should not be affected by the 
occurrence of some bond rupture (see below), 

Bringing in the accelerating affect of the driving force 
implicit in AK, we then consider that da/dN can be 
expressed as the quotient of two terms, one a function of 
AK and the other an M-dependent characteristic time, Tf, 
that reflects the resistance to chain disentanglement: 

da l 
= f  (AK). - (4) 

d ~  rr 

Thus, the test parameterf(AK) reflects the effect of applied 
force per se; the material parameters zf reflects the 
response of the molecular network involved and thus 
depends both on M and on the loading conditions. 

Now the question is: How is rf related to M? Ex- 
perience suggests some kind of exponential dependence; 
indeed Rudd ~° described the relaxation behaviour of PS 
to failure as: 

rs = As eB'M- (5) 

where L in this case is the time to failure, and As and B s are 
constants (the subscript s referring to static loading). 
However better agreement with Rudd's data is achieved 
by use of the following equation, especially when 
M,/Mn > 2: 

rs = A~e- BjMw (6) 

Equation (6) also leads to values of rs that are more 
physically realistic when M is infinite or very small. We 
suggest, therefore, the following general relationship 
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between z and M: 

x = A e-B/M, (7) 

where Ms may be, for example, Mn, M ,  or Mz. 
Another interesting precedent exists for an exponential 

dependence of z on M; a digression illustrates the 
usefulness of such a relationship. In a detailed study of 
relaxation in the melt, Prest and Porter 35 analysed the 
behaviour of blends of narrow-MD PS. They considered 
that t/0.J ° (the product of the zero-shear viscosity, r/0, and 
the equilibrium compliance, jo) could be taken as a 
measure of the time-scale of relaxation of the high-M 
components (%.jo has, of course, the dimension of time). 

Now taking t/o.J ° as zv and constants A and B in 
equation (7) as A~ and B, (the subscript v referring to 
viscous flow), a plot of the data following equation (7) was 
found to give an excellent fit, especially when Mz was used 
(Figure 2). If we assume that % can be related to M ,  by the 
expression 3 , o is a constant and % = A  Mw (where A' 
D ~ 3.4), substituting for % in equation (7), and taking 
logarithms, we obtain: 

lnJ ° = C -  D In M ,  - Bv/M~ (8) 

where the constants can also be determined by multilinear 
regression analysis. 

A plot using equation (8), (Figure 3a) gives better 
agreement with experimental results than several other 
treatments a6-39 and fits as well as the sophisticated 
treatment of Soong et al. a° (not shown). The data of 
Akovali for PS 41 were also found to follow equation (8), 
(Figure 3b). 

Since jo is difficult to describe analytically in terms of 
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Figure 3a Steady-state shear compliance, Je ° vs. weight 
fraction of the high-M component for bimodal blends at 192°C. 
Experimental data ( I I )  from Prest and Porter 35. Curves A, C, D 
and E use approaches from refs. 37, 38, 36 and 39, respectively. 
Curve B, based on equation (8) of this paper is also 
approximated closely by the treatment of Soong et a / r i  ° 
C=45.843, D=3.414, Bv=6.433x 105 or C=44.813, D=3.327, 
Bv=6.349 x 105 (multilinear regression) 
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Figure 2 Steady-state melt relaxation time ~v (=Je°'r/o) vs. 
1 / M  z for bimodal blends of PS at 192*C. Experimental data from 
Prest and Porter (11)35. Av=6.542, Bv=6.433 x 105 

1.2 

A 
C 

% 
( J  

o* % 

b 

0.5 1.0 

wOlo 

Figure 3b Steady-state shear compliance, j o  vs. weight fraction 
of the high-M component for bimodal blends of PS at 129~C. 
Experimental data (11) from Akovali 41. C=40.39, D=3.032, 
B v = 6.317 x 105 (multilinear regression) 
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M 4°, the suitability of equation (8) is gratifying, at least in 
the range of M covered. To be sure, equation (8) cannot 
hold for extremely high values of M. This is because 
equation (7) predicts an asymptotic limit for z so that after 
reaching a maximum, jo  will decrease rather than level off 
as reported in literature 1. 

Considering the flow behaviour of the polymer in the 
melt as analogous to the relaxation behaviour in the 
plastic zone ahead of the growing fatigue crack, we note 
that the value for By of 6.43 x 105 is within the range for Bf 
found in fatigue--(5-8) x l0 s. Thus the effect of M on the 
fatigue process appears to be analogous to that observed 
in static relaxation or viscoelastic processes in the melt. 

Fatigue as a rate process 
Many failure processes involving either bond breakage 

or plastic deformation can be expressed (see refs. 13, ch. 3; 
and 42) in a form of the Zhurkov equation 43 : 

z = z o exp[(Uo - Va)/RT] (9) 

where U o is the energy of activation for the failure process, 
V a characteristic volume (often termed 7, the 'activation 
volume'), a the applied stress, and 30 a constant. In the 
case of failure by crack propagation (which is preceded by 
formation of a plastic zone ahead of the crack), ~ is 
envisioned as a time related to the life-time of a given 
plastic zone. [-Although ~ may be biased by the influence 
of K or AK, the time of formation of the plastic zone 
(typically a craze) is negligible compared to its lifetime 44, 
so that equation (9) should still be followed. The initiation 
of crazes is independent of M, while their propagation is 
strongly dependent16.] 

For  sinusoidal loading (a = am + Aa sin cot), the lifetime 
zr (or an unnotched specimen) has been expressed in terms 
of the mean stress, am, and stress range, Aa, a s  4 5 ' 4 6  : 

exp(EJR T). e x p ( -  VadR T) 
rr= 30 Io(VAa/R T) (lo) 

where E a is the apparent energy of activation, 3o and V are 
defined as in equation (9), and 10 is a zero-order modified 
Bessel function 4s. For  a wide range of a (up to 0.9 x ay, the 
yield stress), fitting shows 47 that equation (10) can be 
expressed as the following analogue to equation (9): 

zf= A' e x p ( -  V'om/RT) 01) 

where V' is an apparent activation volume. For  data on 
PMMA 46'48 and PVC 49, equation (11) was found to hold 
at a high level of confidence (~  0.99). 

Now V' must depend on the stress-wave characteristics, 
though we do not know how the stress wave is translated 
into the stress sensed in the plastic zone. In fact, the Bailey 
criterion (equivalent to Miner's rule for the accumulation 
of damage during cycling) may not hold very well 46. For  
the present purposes, we have assumed that the applied 
mean stress acting on the plastic zone is reflected in a 
localized quasi-static stress O'm,y defined as 
am,y=a~X(1 +R)/2,  R being the ratio of minimum to 
maximum load. (For use of amy, see below.) Here it is 
understood that am,y and the state of the plastic zone are 
independent of AK, as should be the case if negligible 
hysteretic heating occurs at the crack tip and if the 
increase in strain rate associated with an increase in AK 
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has a negligible effect on the state of the plastic zone. 
However, A' must depend on AK to account for the 
dependence of zf on the applied stress and hence on AK. 

Combining equations (11) and (4) and replacing am by 
am,y , we then have 

da 
dN =f'tAr)exp(V'am.r/R T) (12) 

wheref'(AK)=f(AK)/A'. Equation (12) relates the FCP 
rate to the activation volume and parameters that charac- 
terize local and remote stresses. [-For a discussion of an 
alternate approach in terms of an activation surface, see 
Appendix 2.] 

The role of molecular weight 
One may expect that the effect of M on da/dN should be 

manifested through the activation volume, V'; the larger 
M, the lower V' should be, since the molecules effective in 
resisting crack growth should be packed more effectively 
(see the discussion below). If V~ is the limiting activation 
volume for very large values of M, we may define V' as 
V~/t#(M), where ~,(M) reflects the fraction of molecules 
that can form effective entanglements under the load 
concerned (a quantitative expression for O(M) is deduced 
below). Assuming that am is independent of AK, and that 
am is translated into the average effective stress am.y in the 
plastic zone, equation (12)then becomes: 

da/dN =f'(AK)exp[am,yV~/RT~O(M)] (12a) 

=f'(AK)exp[ Cf/qJ(M)] (12b) 

where Cr is a constant at a given temperature, strain rate 
and frequency. 

To relate $(M) to the distribution of molecular weight, 
it is convenient to consider the effect of the distribution on 
the activation volume. For  flow and fracture processes, 
Eyring and Tobolsky s o,sl have defined V in terms of N o, 
the number of bonds per stressed unit area, and 2, the 
distance between equilibrium positions of a bond in the 
initial and stressed states. Thus V=2/2No, where 2/2 is 
the distance along the reaction coordinate to the peak of 
the potential-energy barrier. For  the purpose of this study, 
N O is taken as the number of molecular strands from these 
molecules having M > M c that intersect a unit area prior 
to stressing. A strand consists of a number of mers (two to 
three) which participate actively in the entanglement. The 
ratio of the number of entanglements formed to the 
number of possible active sites is equal to p and is 
independent of M. It is a function of the molecular 
structure in particular the cross-sectional area of the met; 
p is also equal to the ratio of one active area to the area of 
one entanglement spacing. Hence Nop represents the 
number of entanglements formed by the molecules whose 
length is in principle sufficient to transmit the stress 
experienced in the plastic zone, i.e. experienced during 
yielding. The state of the system may be assumed to be 
that encountered at the Tg s2, or even above Tg (by analogy 
with the strong effect of M on, for example, stress 
relaxation at long times). 

However, if plastic deformation is to be sustained, it is 
reasonable to consider that a minimum value exists for 
No; this minimum value may be termed N*, which is 
expected to be a function of T and strain rate. This 
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concept has been previously expressed by Bokshitskii 53, 
and by Scanlan 54 in discussions of chemorheological 
behaviour involving the rupture of primary bonds. Hence 
the number of strands that are actually effective becomes 
(No-N*), and below the threshold value N*, catas- 
trophic rupture may be expected. Also, in general No will 
be less than N o, the maximum number of potentially 
load-bearing strands that can be accommodated per unit 
area. Thus the maximum possible number of effective 
strands becomes (No -N*). As we shall see, both V' and 
¢(M) can be related very simply to the magnitudes of No, 
N* and No. In terms of the unit area, then the area defined 
by l/Nov is the minimum area per load-bearing strand. 

We may now define V' (or actually V~, the value of V' 
for a given M) in terms of the proportion of actually 
effective load-bearing strands, i.e., those that not only can 
take part in entanglements but also are effective in resisting 
the load: 

2 2 (N~ -N*)  
VM=2(No-N*)=2(No-N *) (No~-N*) (13a) 

and 
2 

V~ = (13b) 
2(Nov - N*) 

Following our earlier definition of V~ = V'/~,(M), then 

N o - N *  
~'(M) = N o - N *  (14) 

Thus ~(M) adjusts the activation volume to reflect the 
proportion of molecules that can actually participate in 
effective entanglement networks and in resisting defor- 
mation and failure. 

Of course it is convenient to work with such accessible 
quantities as the weight fraction. The actual number of 
entanglements per unit area Nop, is equal to Nop, its 
maximum possible value, multiplied by a dilution factor 
resulting from the fact that only those molecules greater 
than M~ share the load in the plastic zone. Since it is now 
established 55 that in the bulk we are in a state of 
association of molecules similar to the one of a 0-solvent 
the area occupied by one molecule is equal to koM~, (ko in 
nm g-1/2 moleX/2) and here we neglect the change of the 
first power dependency on M to around 1.2 occurring at 
very low M. We can thus relate Nop to N~op as follows: 

N op= N op nikoM nlkoM 
\M~> M, [i= 0 / 

(15) 

This can in turn be written approximately as 

No=No W (16) 

Because No~ is fixed by the polymer chemistry, a unique 
value of W,, W*, corresponds to N*. The complementary 
value of W*, 1 -W*,  can be related to the number- 
average of the areas which do not carry load under post- 
yielding conditions and is in effect the void fraction if 
crazing is going on. Equation (14) then becomes: 

W -  W* 
~O(M)= 1 -  W* (17) 

In effect we take all entanglements to be equivalent 
dissipators of energy. This means that perfectly monodis- 

perse samples having M > Mc should behave similarly in 
FCP or impact tests, regardless of M. The effect is the 
same as ifa single relaxation time governs the disentangle- 
ment process. Experiments on narrow-MD polystyrene in 
progress should allow us to test this assumption. Each 
quantity in equation (17) can be determined experimen- 
tally: (1-  W) by g.p.c, or from equation (3); as shown 
below, W* is found by extrapolating values of fracture 
surface energy, 7, vs. W to 7 = 0. 

Thus ¢(M) may also be taken to be the variable that 
governs the variation of the fracture surface energy 7 with 
M. Kusy and Turner s have related 7 to the Griffith 
fracture energy, 70, as follows: 

~=7o + W7o (18) 

where 7~ is for the limiting case of M--,oo or W= 1. We 
suggest using ~k(M) instead of W, so that 

7=7o +~b(M)7oo and (19) 

y = qJ(M);  = 

for high values of M. In equation (19), 7 = 7o at a value of 
M, M*, corresponding to W*; Kusy and Turner in effect 
took W* to equal zero whereas we take W* to be finite. It 
must be recognized that 70 is not a finite constant, but 
varies with M albeit slowly as revealed by the experimen- 
tal work of Robertson 56 and in the theoretical treatment 
of Kramer 57 or Kusy and Katz 58. However, at M = M*, 7 
is around 0.01"7®, the extrapolation procedure is then 
justified and gives us an estimate of M*, the M at which 
cooperative energy dissipation due to entanglements 
becomes possible. 

Combining equations (12b) and (17), we obtain the 
following 

da [ -  ( l - W * ) ]  
~-~ = f  (AK) expL~,(w_ w,)J (20) 

which expresses the FCP rate in terms of a function of the 
applied stress and a function of the fraction of molecules 
that can form entanglements that are effective in resisting 
cyclic loads. Of course, the choice of Mc will bear on W*. 
We believe that (1 - W*) should compare with the void 
fraction in a range under similar conditions as reported in 
the literature. Table 2 summarizes different values of W* 
and Z* obtained using equation (19) with W or Z, the Z 
fraction of molecules greater than Me, respectively to- 
gether with published void contents. The use of W stems 

Table 2 On the choice of Mc (isotropic polymer)  

2a. P M M A  void content  (reported: 0.4)(66) 

M c x 10 - 4  3 4 6 8 10 

1 - W *  0.34 0.5 0.73 - - 
1 - Z *  - - 0.30 0.45 0.6 

2b PVC void content  (reported: 0.56 to 0.64)(es) 

M c x 10--" 1 2 2.2 2.6 3 

l - -W*  0.21 0.53 0.59 0.71 0.82 
l - - Z *  0.03 0.14 0.17 0.24 0.32 
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from this comparison and the use of Mc = 22 000 for PVC 
and Me=30000 for P M M A  seems plausible. 

While the value of 30000 for the Me for P M M A  agrees 
well with values from literature (ref. 1, p. 378; and ref. 59) 
unequivocal values for the Mc of PVC are apparently not 
available. Recently values of 75006 o and 580061 have been 
used, but the former is calculated (and subject to possibly 
large error) and the source of the latter is not given. From 
the review of Porter  and Johnson 62 one can infer an M, of 
around 6250 from experiments in dilute solution (6.5% 
PVC in cyclohexanone). However, values could be much 
higher. For  example using Van Krevelen's correlation (ref. 
63, pp. 259 and 246) one can calculate an M, of 12 500 for 
PVC. Also Kaelble 64 gives an Me of 6500 (no source) 
which implies an Mc of from 13 000 to possibly 19 500. 
Finally, from a study of Edwards and Collins 6s on the 
viscosity of PVC melts vs. M,, at different shear rates, an 
M¢ close to 20 000 can be inferred. 

Thus, although the critical molecular weight necessary 
for the onset of cooperative dissipation due to entangle- 
ments in the plastic zone in FCP under tension-tension 
loading is not necessarily equal to the M~ derived from 
viscosity measurement in shear vs./~w, the values are not 
far apart. 

Tests of the model 
Values of W and W*. As shown in Table 1, values of W 

determined from the g.p.c, data agree well with values 
determined using equation (3). Since values of y for 
PMMA could be estimated from data in ref. 20, W* was 
determined for PMMA by expressing tO(M) as 
[ -  W*/(1 - W*)] +[W/(1 - W*)]. Assuming that 7o is 
negligible in comparison to Yo~, a plot of Y/Y~o vs. W was 
used to verify the validity of equation (19), i.e., whether or 
not W* is in fact a finite quantity. Using a value of 
2.6 x 102 J/m 2 for ),~o 2°, the following relationship was 
obtained (Figure 4): 

1.0 

8 
05  :>- 

- o  0 5  hO 
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Figure 4 Relative fracture energy, 7/~'oo, vs. wt. fraction species 
having M>Mc; (A) PVC and (V) PMMA 
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Figure 5 Log FCP rate vs. 1/¢(M); (A) PVC and (V) PMMA; 
1/~ (/14) from equation (23) 

7/y o~(PMMA)= ( - 2.01) + (3.08 W) (21) 

The fact that the intercept is negative [ -  W*/ (1 -  W*)] 
confirms that W* is a positive number, as proposed. The 
value of W* itself may be obtained from the intercept, 
from the slope, or by setting y = 0; the average of all three 
values is 0.66 (_+ 0.01). This value seems quite reasonable, 
for the corresponding value of M, ,  6.5 x 104, is close to the 
minimum M ,  required to effectively bear a load, as judged 
by the minimum Mw required to achieve machinability of 
a specimen 22. Also, the value of (1 - W*) 0.34 agrees well 
with the estimate of 0.40 for the void fraction in a typical 
PMMA craze 66. 

In the case of PVC, accurate values of 7 over a wide 
range of M were not available; the data in refs. 21 and 24 
are believed to be too high, due to delamination during 
testing, and insufficient data are found in other literature. 
An estimate of 0.5 for Y/Yoo was therefore taken for the 
lowest-M sample studies by analogy with relative impact 
strengths from ref. 67. Figure 4 then yields the following 
relationship: 

7/~o~ = - 0.74 + 1.8 W (22) 

The value found for W* is 0.41 ; its complementary value 
0.59 falls in the range of the value reported by Ishikawa et 
al. 68 for a PVC range at 303 K (0.56 to 0.64), it cor- 
responds to a M* of 28 000 with this assumed MD. 

Fitting of fatigue data. Taking FCP data 2°'2x'24 for 

PMMA and PVC [at AK=0.6  and 0.8 MPax/m, re- 
spectively], and fitting to equation (12b) (Cr= Br) we have 
(see Figure 5): 

ln(da/dU) = A'f + B~/~k(M) (23) 

As is evident from Table 3, the fit is excellent. Now we may 
work backwards to see if we can obtain the empirical 
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equation (2) by determining ~(M) as a function of Mw and 
substituting for ~,(M) in equation (23). In fact the follow- 
ing equation holds well (see Table 4 and Figure 6) for the 
range in M considered: 

1/~,(M) = A" + B"/M.  (24) 

Substituting equation (24) in equation (23), we obtain: 

ln(da/dN) -- A[' + B;'/M,,, (25) 

The coefficients in equation (2) and (25) are compared in 

Table 3 Coefficients for FCP rates as a function of ~ (M) a 

Polymer A ' f  B'f Confidence level 

PMMA 
(Mc=30000) -16.70 5.70 0.99 

PVC 
(Mc=22 O00) - 19.33 7.52 0.98 

aFollowing equation(23) 

Table 4 Coefficients for 1/~ (M) as a function of 1/M w 

Polymer A "  B"  Confidence level 

PMMA 0,979 7.45 x 104 0.99 a 
PVC 0.254 7.69 x 104 0.94 

aCorrelation excludes sample • 6, which was too brittle to test 
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Figure 6 Relationship between 1/~(M) and 105/Mw; (A)  PVC 
and (V) PMMA 

Table 5. The good agreement not only verifies self- 
consistency but also supports the interpretation of the 
empirical equation (2) in terms of the molecular weight 
distribution relative to the requirements for stable en- 
tanglement networks. [It should also be noted that 
equation (23) gives more realistic predictions at very low 
M than equation (2). For example, with M~ = 50000 and 
the same M W D  as the series ~, equation (2) predicts a 
f'mite value for da/dN, while equation (23) predicts 
catastrophic rupture, as is found.] 

Finally, we can observe from the values of $ achieved 
by the highest M of PMMA (40) and PVC 135.1, that 
while the FCP resistance for high M PMMA has been 
saturated the FCP resistance for PVC can still be 
increased (up to threefold) over the highest M reported 
here. 

Activation volumes. Additional support for the in- 
terpretation proposed in equation (20) may be obtained 
by examining values found for the activation volume. 
While one should not expect values of activation volume 
to necessarily be equal in static and cyclic experiments, 
one might suppose that they would have the same order of 
magnitude. If we consider equation (12)--equation (12b), 
we can calculate values of V' and compare them with 
values of V from static experiments or V' assuming sine 
wave loading (see equation (11)). The calculated values in 
Table 6 are based on the use of the stress defined above as 
a=r The values of V and V' from FCP are within a factor 
of 2, and the assumption of quasi-static stress seems to be 
better than the sine-wave assumption. Note also that each 
value of V' is higher for PVC than for PMMA -- as is 
found for V. Thus the use of quasi-static stress in 
calculations based on cyclic loading gives values of 
activation volume that are close to those for static 
loading. It should be emphasized again that the values of 
the constants in equations (2), (23), (24), (25) are only valid 
for the experimental conditions of refs. 20, 21,22, 24, 67 -- 
namely, frequency of 10 Hz, room temperature, sinusoidal 
loading and R = 0.1 (ratio of minimum to maximum load). 

Possible extensions. While the treatment proposed is 
developed for amorphous polymers having unimodal 
distributions of M, it should be possible to extend it to 
other cases such as bimodal distributions as in homopo- 
lymer blends 22 and crystalline polymers. With the latter, a 
major effect of M may be manifest through the stability of 
the tie sequences between crystallites. Indeed preliminary 
calculations that take account of the crystalline mor- 
phology suggest that extending to the cry§talline case is 
possible .7. Also consideration of the influence of the 
external variables (frequency, AK, temperature, stress 
wave function) would be very informative. 

CONCLUSIONS 

Several conclusions may be drawn: 

Table 6 Comparison of coefficients in fatigue crack propagation equations (2) and (24) 

Confidence 
Polymer A f "  (Eqn (25)) In Af  (Eqn (2)) Bf'" Bf (Eqn (2)) Level (Eqn (2)) 

PMVlA --11.20 --11.24 4.25 x 10 s 4.48 x 10 s 0.97 
PVC --17.42 --16.90 5.78 x 10 s 5.46 x 10 s 0.87* 

* The f i t  is better when/14n is used (r = 0.975) 
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Table  6 Comparison of  activation volumes in fat igue and static deformat ion  

Polymer V a v 'b  V' (Om, y)C 

P M M A  ( M  w = 2 .10  s ) 5 7 4  - - 

Oy = 81 MPa 673  1180  4 2 0  

P V C ( M  w = 6 x 104) 1740  3 0 4 0  9 0 0  
Oy = 55  MPa 

a The values given in descending order in the column are from refs. 48, 46 and 49, respectively; units in mS/g:mole x 10 s under static loading 

b From the values of column 1, using equation (11) 
c By identification of equation (12a) and (12b) 

(1) The empirical dependence of FCP rates on 
exp (B/M) in PMMA and PVC can be interpreted in terms 
of W, the fraction of molecules whose M > Me, and W*, the 
minimum fraction of such molecules required to form a 
crack-resisting network, the value of 1 - W* comparing 
favourably with the void fraction in a craze. 

Specifically, (da/dN)Ar, the crack growth rate per cycle, 
can be related to these parameters as follows: 
(da/dN)ax=Atexp[BrAb(M)], where ~b(M)=(W- W*)/ 
~1 - W*). 

(2) The function ~O(M) also appears to control the 
activation volume in fatigue and the fracture surface 
energy. 
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APPENDIX 1 

In a recent dimensional analysis A1 of the relations existing 
between healing, fracture, self-diffusion and fatigue of 
random-coil polymer, R. P. Wool proposes that da /dN  is 
merely proportional to the quotient of the distance of 
interpenetration X to the time, too, necessary for complete 
diffusion of the molecules for complete interpenetration. 
Since X is proportional to M °'s and too is proportional to 
M a (if a reptation model is assumed), then Wool suggests 
that d a / d N  is proportional to M -2"5. However, analysis 
of FCP data reported in this paper according to this 
model, gives always poorer fitting. 

A1 Wool, R. P. Polymer Prepr. 1982, 23(2), 62 

APPENDIX 2 

Pollet and Bums B1,B2 have suggested that static stable 
crack propagation can be explained in terms of an 

activation process whose characteristic parameter is a 
surface (area) that is inversely proportional to G, the strain 
energy release rate. The surface would then be inversely 
proportional to K 2 (in general, G ~ K2/E)  

• C ( T )  2C(T) 

- vo (m) 

where Vo = maximum possible crack speed at temperature 
T, G~c is the critical strain energy release rate (for the 
opening mode), and C(T) /G  is the activation area. 

This equation resembles the Paris law, but effectively 
normalizes da/dt  with respect to the static fracture 
toughness, K~c. However, the slope implied in a plot of 
In da/dt  vs. In AK [i.e., 2C(T/kT]  would be very sensitive 
to M for both activation volume and activation area must 
be sensitive to the defect concentration and hence to the 
concentration of chain ends of non-entangled species. In 
fact this prediction does not agree with experimental 
findings24; the slopes are not very dependent on M. Thus 
our assumption that the activation volume is independent 
of AK appears to be reasonable, at least with the 
experiments discussed in this paper. Also in our case the 
activation process is explicitly confined in the plastic zone. 

BI Pollet, J. C. and Burns, S. J. Int. J. Fracture 1977, 13, 667 
B2 Pollet, J. C. and Burns, S. J. Int. J. Fracture 1977, 13, 775 
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